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A B S T R A C T   

Numerous studies have reported the use of hybrid semiparametric systems that combine shallow neural networks 
with First Principles for bioprocess modeling. Here we revisit the general bioreactor hybrid model and introduce 
some deep learning techniques. Multi-layer networks with varying depths were combined with First Principles 
equations in the form of deep hybrid models. Deep learning techniques, namely the adaptive moment estimation 
method (ADAM), stochastic regularization and depth-dependent weights initialization were evaluated in a hybrid 
modeling context. Modified sensitivity equations are proposed for the computation of gradients in order to 
reduce CPU time for the training of deep hybrid models. The methods are illustrated with applications to a 
synthetic dataset and a pilot 50 L MUT+ Pichia pastoris process expressing a single chain antibody fragment. All 
in all, the results point to a systematic generalization improvement of deep hybrid models over its shallow 
counterpart. Moreover, the CPU cost to train the deep hybrid models is shown to be lower than for the shallow 
counterpart. In the pilot 50L MUT+ Pichia pastoris data set, the prediction accuracy was increased by 18.4% and 
the CPU decreased by 43.4%.   

1. Introduction 

The first steps towards the integration of mechanistic abstraction and 
neural networks in process systems engineering were taken in the early 
90’s with the pioneering works of Psichogios and Ungar (1992), Su and 
Mcavoy (1993), Schubert et al. (1994) and Thompson and Kramer 
(1994). The main motivation was to overcome neural networks limita
tions, namely the (i) inability to comply with process constraints, (ii) the 
tendency for data overfitting, and (iii) the poor predictive power outside 
the training-validation domain. Thompson and Kramer (1994) framed 
this problem as hybrid semiparametric systems, whereby parametric 
functions with fixed structure stemming from prior process knowledge 
(e.g., macroscopic material balance equations) are combined in series or 
in parallel with nonparametric functions (e.g., neural networks) iden
tified from process data. Numerous bioprocess modeling studies fol
lowed (e.g., Preusting et al. (1996), van Can et al. (1998), Chen et al. 
(2000), Galvanauskas et al. (2004), Oliveira (2004), Teixeira et al. 
(2007), Fiedler and Schuppert (2008), von Stosch et al. (2011), Ferreira 
et al. (2014), Pinto et al. (2019), O’Brien et al. (2021) and Bayer et al. 
(2021)) highlighting the advantages of the hybrid technique, which may 
be summarized as a more rational usage of prior knowledge eventually 

translating into more accurate, transparent and robust process models. 
The vast majority of hybrid modeling studies explored the combi

nation of conservation laws and shallow neural networks (see review by 
von Stosch et al., 2014). Recent advances in deep learning have however 
demonstrated that neural networks with multiple hidden layers (deep 
networks) are advantageous over their shallow counterparts. Shallow 
and deep networks are both universal function approximators, but deep 
networks are able to approximate compositional functions with expo
nentially lower number of parameters and sample complexity (Delal
leau and Bengio, 2011; Eldan and Shamir, 2016; Liang and Srikant, 
2017) and are less prone to overfitting (Mhaskar and Poggio, 2016). The 
shift from shallow to deep network architectures has been triggered by 
the development of stochastic gradient descent training algorithms, 
particularly the ADAM method (Kingma and Ba, 2014). ADAM is a 
first-order gradient-based method for stochastic objective functions 
based on adaptive estimates of lower-order moments. The data sub
sampling along with the learning rate adaptation at each iteration 
resulted in a simple and robust training method that is less sensitive to 
gradient attenuation and to the convergence to local optima. Stochastic 
regularization based on weights dropout has been shown to effectively 
avoid overfitting in deep learning (Hinton et al., 2012; Srivastava et al., 
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2014). Stochastic regularization is frequently associated with stochastic 
gradient descent methods to prevent overfitting and to improve gener
alization properties (Koutsoukas et al., 2017). 

Only very recently the deep learning advances are penetrating the 
hybrid modeling field. Bangi and Kwon (2020) proposed a hybrid model 
for a hydraulic fracturing process that combines a First Principles model 
with a deep neural network. A fully connected network with 5 layers (1 
× 20 × 20 × 20 × 1), hyperbolic tangent activation (tanh) in the 3 
hidden layers and linear activation in the input/output layers, was 
adopted. The Levenberg–Marquardt algorithm and finite 
difference-based sensitivity analysis were adopted to train the hybrid 
model. The resulting hybrid model had superior extrapolation properties 
compared to a purely data-driven deep neural network model. Following 
a similar approach, Shah et al. (2022) developed a deep hybrid model 
for an industrial fermentation process. Lee et al. (2020) developed of a 
hybrid deep model of an intracellular signaling pathway using a neural 
network with 2 hidden layers. Bangi et al. (2022) proposed the Universal 
Differential Equations (UDE) formalism for mixing the information of 
physical laws and scientific models with data-driven machine learning 
approaches. They applied it to a Saccharomyces cerevisiae batch 
fermentation process. Merkelbach et al. (2022) have develop a software 
package called HybridML that uses TensorFlow for artificial neural 
network training and Casadi to integrate ordinary differential equations. 

In this study, we revisit the general bioreactor hybrid model (Oli
veira, 2004; Teixeira et al., 2007; von Stosch et al., 2011; Ferreira et al., 
2014; Pinto et al., 2019) and extend it to deep learning. More specif
ically, we explore deep learning techniques in a hybrid semiparametric 
modeling context, such as deep feedforward neural networks with 
varying depths, the rectified linear unit (ReLU) activation function, 
dropout regularization of network weights, and stochastic training with 
the ADAM method. These techniques are applied to two case studies and 
are benchmarked against the traditional shallow hybrid modeling 
approach. 

2. Materials and methods 

2.1. General deep hybrid model for bioreactor systems 

A stirred tank bioreactor can be generically represented by the 
hybrid model structure of Fig. 1. The dynamics of state variables are 
modelled by a system of ordinary differential equations (ODEs) derived 
from macroscopic material balances and/or intracellular material bal
ances and/or other physical assumptions. These equations take the 
following general form: 

dx
dt

= f (x, ϑ, u, t) (1a)  

y = h(x,ϑ) (1b)  

with t the independent variable time, x(t) the process state vector, u(t)
the vector of external inputs (feed rates, temperature, pH, etc), ϑ a vector 
of process variables with unknown defining functions, and y the vector 
of measured variables. Eqs. (1a) and (1b) are the state-space model and 
measurement model, respectively. The functions f(.) and h(.) are of 
parametric nature thus with fixed structure stemming from prior 
knowledge. They are typically set by material and/or energy balance 
equations of extracellular and intracellular variables (as shown in the 
case studies). Some relevant bioprocess variables may be less defined in 
terms of explanatory mechanisms and/or rely on loose assumptions. 
Typical examples are biological reaction kinetics or product quality at
tributes, which are difficult to establish on a mechanistic basis. In the 
general hybrid model, such properties are defined as loose functions, ϑ(⋅ 
) (typically of the process state and external inputs), with unknown 
structure, i.e. nonparametric functions without physical meaning. 
Among the many possibilities to define ϑ(⋅), the preferred approach (in a 
hybrid modeling context) has been by far the feedforward perceptron 
networks with 3 layers only (see review by von Stosch et al., 2014). In 
the present study, the more general case of deep multi-layer perceptron 
networks with arbitrary number of nh hidden layers is explored, stated 
as follows: 

H0 = g(x, u, t) (2a) 

Fig. 1. Schematic representation of the general deep hybrid model for bioreactor systems. The model is dynamic in nature with state vector, x, and observable 
outputs y. The model has a parametric component (functions f(.) and h(.)) with fixed mathematical structure determined by First Principles (typically material/ 
energy balance equations). Some cellular properties are modelled by a deep feedforward neural network with multiple hidden layers as function of the process state, 
x, and external inputs, u. The deep neural network is a nonparametric model component with loose structure that must be identified from process data given the 
absence of explanatory mechanisms for that particular part of the model. 
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Hi = σ
(
wi⋅Hi− 1 + bi), i = 1,…, nh (2b)  

ϑ(⋅) = wnh+1⋅Hnh + bnh+1 (2c) 

The input layer Eq. (2a)) typically receives information of the state 
variables, x, and/or external inputs, u (temperature, pH, etc,…) and/or 
process time, t. An optional non-linear pre-processing function, g(x,u,t), 
may sometimes facilitate the identification of ϑ(⋅), as for example con
centration ratios are set as inputs to the neural network or other 
normalization rules (see von Stosch et al. (2016), Gnoth et al. (2008) and 
Gnoth et al. (2010)). Then, follows nh hidden layers (Eq. (2b)) with 
σ(⋅) the nodes transfer function (in this study either the tanh or the 
ReLU). Finally, the output layer has linear nodes (Eq. (2c)). The pa
rameters w = {w1,w2,…,wnh+1} and b = {b1, b2,…, bnh+1} are the nodes 
connection weights that need to be identified from data during the 
training process. Presuming that initial conditions x(t) = x0 and network 
weights ω = {w, b} are given, the deep hybrid model can be solved by 
numerical integration as an Initial Value Problem (IVP). In the present 
study, a Runge–Kutta 4th order ODE solver was adopted to integrate the 
system (Eqs. ((1) and (2)) and compute x, y and ϑ over time. All the code 
was implemented in MATLAB on a computer with Intel(R) Core(TM) 
i5-8265U CPU @ 1.60 GHz 1.80 GHz, and 24 GB of RAM. 

2.2. Training method 

2.2.1. Standard non-deep method 
Hybrid bioreactor models are typically trained by indirect supervised 

learning with cross-validation to avoid overfitting (e.g., Psichogios and 
Ungar (1992), Oliveira (2004), Pinto et al. (2019) and von Stosch et al. 
(2014)). The data are partitioned in a training subset (for parameter 
estimation), a validation subset (stop criterion to avoid overfitting) and 
a test subset (to assess the predictive power). Partitioning is typically 
performed batch wise with the amount of data allocated in each parti
tion depending on the objective of the study and on the amount of data 
available. The optimization of network parameters is performed over the 
training set only in a weighted least-squares sense: 

WSSE =
1
T

∑T

t=1

(
y∗t − yt

)2

σ2
t

(3)  

with T the number of training patterns, y∗t the measured variables at time 
t, yt the corresponding model prediction and σt the measurement stan
dard deviation. This method is called indirect because the loss function 
is not directly linked to the neural network outputs, ϑ. The Lev
enberg–Marquardt method (LMM), has been shown to solve very 
effectively the indirect training problem (Eqs. (1)–(3)) in the case of 
shallow hybrid models (Schubert et al., 1994; Oliveira, 2004). The LMM 
has also been used in a recent deep hybrid modeling study (Bangi and 
Kwon, 2020). The LMM convergence is improved if the sensitivity 
equations are applied to calculate the loss function gradients instead of 
numerical gradients (e.g., Psichogios and Ungar (1992), Schubert et al. 
(1994) and Oliveira (2004)). The sensitivity equations for the general 
hybrid have the following structure (for simplicity it is assumed that y =
x): 

g =
∂WSSE

∂ω = − 2
∑T

t=1

y∗t − yt

σ2
t

(
∂xt

∂w

)

(4a)  

d
( ∂x

∂w

)

dt
=

(
∂f
∂x

) (
∂x
∂w

)

+

(
∂f
∂x

)

(4b)  

(
∂c
∂w

)

|t=0 = 0 (4c) 

The sensitivity equations are obtained by differentiation of the state- 
space model (Eq. (1a)) in relation to the network parameters, w. For 

more details regarding the sensitivity equations in a hybrid modeling 
context see Psichogios and Ungar (1992) and Oliveira (2004). The 
integration of the sensitivity equations was performed in this study with 
a Runge–Kutta 4th order ODEs solver. 

2.2.2. Stochastic adaptive moment estimation (ADAM) with semi-direct 
sensitivities 

An important goal of this study is to compare the standard training 
method with state-of-the-art deep learning techniques in the context of 
hybrid modeling. Particularly, ADAM is considered a landmark in deep 
learning and was implemented here to train hybrid models. The ADAM 
method estimates the network parameters, ω = {w, b}, through the first 
and second moments of the gradients of the loss function and a set of 
hyperparameters α, β1 and β2, representing the step size and exponential 
decays of the moment estimations (for details see Kingma and Ba 
(2014)). The loss function is the same as in the previous method (Eq. 
(3)). This results in the following implementation: 

mk =
β1⋅mk− 1 + (1 − β1)⋅gk

(
1 − βk

1

) (5a)  

vk =
β2⋅vk− 1 + (1 − β2)⋅g2

k(
1 − βk

2

) (5b)  

wk = wk− 1 −
α⋅mk( ̅̅̅̅vk

√
+ ε

) (5c)  

with k the iteration number, mk the first order moment of gradients, gk 
the loss function gradients, vk the second order moment of gradients. For 
the present study, the suggested default parameters of α = 0.001, β1 =

0.9, β2 = 0.999 and ε = 10− 8 were adopted (Kingma and Ba, 2014). 
The gradients at each iteration are obtained by solving the sensitivity 

Eqs. (4a)–(4c). Because the CPU scales exponentially with the size of the 
network, a different approach to calculate the gradients was explored. 
Instead of computing the sensitivities of state variables in relation to 
network parameters, 

( ∂x
∂w
)
, a semidirect approach was implemented 

where the sensitivities of state variables in relation to network outputs, 
( ∂c

∂ϑ

)
, are computed. The semidirect sensitivity equations are as follows 

(again assuming y = x): 

∂WSSE
∂ϑ

= − 2
∑T

t=1

y∗t − yt

σ2
i

(
∂x
∂ϑ

)

(6a)  

d
( ∂x

∂ϑ

)

dt
=

(
∂f
∂x

)(
∂x
∂ϑ

)

+

(
∂f
∂ϑ

)

(6b)  

(
∂x
∂ϑ

)

|t=0 = 0 (6c) 

Finally, the loss function gradients g = ∂WSSE
∂ω can be computed from 

the ∂WSSE
∂ϑ sensitivity (Eq. (6a)) by the well-known error backpropagation 

algorithm through the network (Werbos, 1974). The main advantage of 
the semidirect method is that the number of ODEs for calculating the 
sensitivities is massively reduced and are independent of the size of the 
network. This results in a sizable CPU reduction as shown in the results 
section. 

2.3. Case studies 

2.3.1. Lee & Ramirez synthetic data set 
A synthetic data set was generated based on the Lee & Ramirez 

bioreactor model ( Lee and Ramirez, 1994). This model is frequently 
adopted as a benchmark to test different optimal control methods (e.g., 
Banga et al. (2005)). The objective in this case study is to train hybrid 
models on an information rich data set (time series data generated by 
statistical design of experiments) and then to assess if the trained hybrid 
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models are able to describe (extrapolate) the maximum productivity 
fed-batch obtained by optimal control studies (Lee and Ramirez, 1994). 

The Lee & Ramirez model describes the dynamics of biomass (X), 
substrate concentration (S), inducer concentration (IND), product con
centration (P), shock factor (Sh), recovery factor (Re) and reactor vol
ume (V) in a recombinant Escherichia coli fed-batch process. Experiments 
were simulated dynamically for different conditions (see below) 
applying a Runge–Kutta 4th order ODEs solver. Samples were simulated 
with 1 h sampling time. Gaussian noise was added to “sampled” vari
ables with standard deviations of 1.5 (X), 5(S) and 0.3(P) (10% of 
maximum concentration). As shown in the results section, modeling 
errors were calculated based on the noisy data (noisy weighted mean 
squared error (WMSE)) and also on the noise free data (noise free 
WSSE). 

A central composite design (CCD) was applied to the process degrees 
of freedom, namely the induction time between 5 and 9 h, pre-induction 
substrate feed rate between 0 and 0.8 h–1, post-induction substrate feed 
rate between 0 and 0.8 h–1 and Inducer feed rate between 0 and 1 h–1. 
This resulted in 25 fed-batch experiments. The 25 fed-batch experiments 
were included in the training data partition (297 training data points). 
The validation data set (used only as training stop criterium) was ob
tained by adding Gaussian noise with standard deviations of 1.5 (X), 5 
(S) and 0.3(P) to the training data set resulting in 297 validation data 
points. In our experience, this partition method maximizes data usage 
for training and also effectively prevents model overfitting. For the test 
data set (used to assess the model generalization capacity), the optimal 
fed-batch with optimized feeding and maximum product concentration 
of 3.16 g/L (Lee and Ramirez, 1994) was adopted (15 data points). In 
summary, the models were trained/validated with the 25 DoE experi
ments and then set to predict the dynamic profiles of the optimal pro
duction fed-batch. The optimal production fed-batch delivers a final 
product mass, which is 34.4% higher than the best DoE fed-batch. The 
details of the dataset are provided as supplementary material A. 

The hybrid model structure adopted for this problem is shown in 
Fig. 2. The reactor has 7 internal sate variables x = [X, S, P, IND, Sh,Re]T 

of which only 3 are measured, thus y=[X, S, P]T. The system of ODEs are 
derived from mass conservation laws and are the same as in Lee and 
Ramirez (1994). The neural network computes 4 reaction terms ϑ =
[μ, vS, vP, k1]

T, taken as unknown cellular features that need to be 
learned from data. The neural network has only 3 inputs H0 =

[S, IND, Sh]T which were pre-selected based on prior knowledge of the 
reaction kinetics for this problem (Lee and Ramirez, 1994). Hybrid 
models with different network depths and sizes were evaluated, with the 
best hybrid model discriminated on the basis of the Akaike Information 
Criterion with second order bias correction (AICc) computed for the 
training data partition as follows: 
AICc = T ln(WSSE)+ 2 nw+

2 nw (nw + 1)
T − nw − 1 (7). 

AICc includes an overparameterization penalty and is commonly 
used to discriminate between empirical model candidates with different 
number of parameters, nw, and to select a parsimonious model for small 
sample sizes (Li et al., 2002). 

2.3.2. MUT± Pichia pastoris pilot data set 
A MUT+ Pichia pastoris expressing a single chain antibody (scFv) was 

cultivated in a Lab Pilot Fermenter Type LP351, 50 L, Bioengineering, 
Switzerland with standard instrumentation to measure on-line pH, 
temperature, pressure, stirrer, airflow and pO2. The wet cell weight and 
scFv titer were measured off-line. All the details of the experimental 
procedure are given elsewhere (Teixeira et al., 2006). The reactor 
operation is divided in three phases: glycerol batch (GB) phase, glycerol 
fed-batch (GFB) phase and methanol fed-batch (MFB) phase (or 
post-induction phase). In the GB phase, the initial glycerol level was set 
at 4%, taking approximately 30 h for complete depletion. Thereupon, 
the GFB phase starts, following an exponential feeding profile. At the 
end of the GFB, a transition to the MFB phase is implemented in order to 
minimize the adaptation time of cells to methanol. After the transition 
phase, the methanol feeding rate, the pH and the temperature were 
designed in order to generate process data to optimize scFv productivity 
(see Teixeira et al. (2006) for details). A total of 9 experiments were 
performed with varying methanol feed rate, temperature and pH. In this 
study, only the MFB phase was considered for hybrid modeling. The data 
set with the 9 experiments has 207 measurements of biomass wet cell 
weight in triplicate and 207 measurements of scFv in triplicate. The 
training-validation partition included 8 experiments and the test parti
tion 1 experiment. All possible training-validation/test permutations 
were evaluated. The hybrid model structure adopted for this problem is 
similar to that of Fig. 2 with a few adaptations (discussed in the results 
sections). The training and model discrimination methods were as for 
the Park & Ramirez case study. 

Fig. 2. Deep hybrid model structure for the Lee & Ramirez data set. The parametric component is established by a system of ODEs as described in Lee & Ramirez 
(1994). The specific biologic kinetics are considered mechanistically unknown thus modelled by a deep feedforward network. The job of this model is thus to “learn” 
from data the biologic kinetics under the constraint of dynamic material balance equations. 
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3. Results and discussion 

3.1. Development of a shallow hybrid model: Lee & Ramirez case study 

A traditional shallow hybrid model was first developed for the Lee & 
Ramirez data set. A shallow feedforward network with a single hidden 
layer with tanh activation function was employed. The hybrid model was 
trained with the standard nondeep method (LMM optimization + cross- 
validation + random weights initialization from the uniform distribu
tion). The training and validation partition comprehended 25 experi
ments (825 training patterns) designed by statistical DoE (see methods 
section). The test partition included a single experiment with the highest 
protein production (optimal batch obtained by dynamic optimization as 
reported in (Lee and Ramirez, 1994). The test experiment has a final 
product mass 34.4% higher than the best training/validation experi
ment. For a given network size, the training was always repeated 10 
times with different weights initialization between [-0.1, 0.1] and only 
the best result was kept (lower validation error). This procedure was 
repeated for hybrid models with varying number of nodes in the hidden 
layer keeping the same data partition and maximum number of itera
tions of 20,000 for comparability. The overall results are shown in 
Table 1. From these results, it is possible to conclude that the optimal 
number of hidden nodes is 10 corresponding to the lowest corrected 

Akaike information criterion (AICc) value (111). Of note, the AICc cri
terion, which is calculated for the training partition only, coincided with 
the lowest noise free test error (0.54 noise free WSSE; to note that the 
noise free WSSE is computed on process data uncorrupted by experi
mental noise, thus a better metric for accessing the predictive power). 
Despite the coincident outcome in this case, the AICc sometimes fails to 
discriminate the structure with the highest predictive power as shown in 
the next sections. Moreover, the noisy test error of the selected model 
with 10 hidden nodes (noisy WSSE = 1.05) is only moderately higher 
(11,6%) than the corresponding training error (WSSE = 0.941). 

3.2. Comparing the deep and shallow hybrid modeling approaches 

Several hybrid structures with varying neural network depths (2-4 
hidden layers) were compared with the shallow network case (1 hidden 
layer). The same Lee & Ramirez data set and data partition were kept as 
in the previous section. We first focused on the tanh activation (in the 
hidden layers), which has been the standard for nonlinear regression 
problems with shallow neural networks (Cybenko, 1989). Every model 
structure was trained with two different methods: the traditional 
LMM+CV+tanh and ADAM+CV+tanh. The training was always 
repeated 10 times and only the best solution (lowest validation error) 
was kept, as before. The number of iterations for the ADAM method was 

Table 1 
Training results of shallow hybrid models for the Lee & Ramirez data set with 25 training batches (Training WSSE), 25 validation batches (Validation WSSE) and a 
single test batch with the highest possible productivity obtained by optimal control(Test WSSE noisy/noise free are computed with noisy or noise free target con
centrations, respectively). The AICc is computed for the training data set only. Each row represents a different model with a given number of hidden nodes (between 1 
and 15) in a single hidden layer with tanh activation function. The hybrid models were trained with the standard nondeep method (LMM optimization with 20,000 
iterations + cross-validation + random weights initialization between [-0.1, 0.1] from the uniform distribution). The training was repeated 10 times with different 
weights initialization and only the best result is kept for each model.  

Number of hidden nodes Training WSSE Validation WSSE Test WSSE (noisy) Test WSSE (noise free) AICc CPU time Number of weights 

1 20.2 20.3 42.2 2.1 2490 776 10 
2 2.57 2.77 7.53 8.12 810 1320 17 
3 1.16 1.31 1.08 1.39 172 1780 24 
4 1.1 1.29 1.34 1.01 146 1560 31 
5 2.77 3.07 6.56 5.42 922 1390 38 
6 1.78 1.94 1.22 2.11 570 1730 45 
7 1.40 1.70 7.87 7.31 389 1870 52 
8 1.09 1.32 1.14 0.76 200 2050 59 
9 1.01 1.21 1.04 0.68 150 2250 66 
10 0.941 1.16 1.05 0.54 111 2250 73 
11 0.949 1.22 1.33 0.83 134 2360 80 
12 0.914 1.11 0.86 0.75 121 2290 87 
13 0.935 1.07 1.03 0.69 154 2280 94 
14 0.944 1.15 1.10 0.93 183 2230 101 
15 0.899 1.11 0.937 0.62 152 2670 108  

Table 2 
Comparison of deep and shallow hybrid models for the Lee & Ramirez data set (same data partition as in Table 1) trained either by the LMM algorithm or by the ADAM 
algorithm. In all cases cross-validation (CV) and indirect sensitivities were applied. Each row represents a different shallow or deep hybrid model structure using either 
tanh or ReLU in the hidden layers. The training was repeated 10 times with different weights initialization and only the best result is kept.  

Hybrid model Training 
method 

Hidden layer 
type 

Training WSSE 
(noisy) 

Validation WSSE 
(noisy) 

Testing WSSE 
(noisy) 

Testing WSSW 
(noise free) 

AICc CPU 
time 

Weights 

Shallow 5 LMM+CV tanh 2.77 3.07 6.56 5.42 922 1390 38 
Shallow 10 LMM+CV tanh 0.941 1.16 1.05 0.54 111 2250 73 
Deep 5 × 5 LMM+CV tanh 1.06 1.31 1.40 1.05 198 1674 68 
Deep 5 × 5 × 5 LMM+CV tanh 0.921 1.17 1.13 0.72 154 74,892 98 
Deep 5 × 5 × 5 
× 5 

LMM+CV tanh 0.835 1.09 0.915 0.32 155 81,430 128 

Shallow 5 ADAM+CV tanh 1.22 1.32 1.20 0.66 242 33,476 38 
ReLu 1.02 1.05 1.03 0.35 98 33,410 

Shallow 10 ADAM+CV tanh 1.60 1.21 0.91 0.24 547 30,376 73 
ReLu 1.34 1.13 0.94 0.14 352 30,200 

Deep 5 × 5 ADAM+CV tanh 0.937 1.15 0.82 0.14 95 28,567 68 
ReLu 0.926 1.08 0.923 0.05 90 28,122 

Deep 5 × 5 × 5 ADAM+CV Tanh 0.936 1.16 0.81 0.09 168 32,285 98 
ReLu 0.886 1.04 0.96 0.04 87 32,174 

Deep 5 × 5× 5 
× 5 

ADAM+CV tanh 0.870 1.11 1.05 0.28 189 40,570 128 
ReLu 0.841 1.07 0.942 0.16 152 40,514  
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20,000 as for the LMM method. The overall results are shown in Table 2. 
The results in Table 2 clearly show ADAM to outperform the LMM 

method in what concerns the predictive power of the final model (the 
noise free test WSSE; to note that the AICc is not an adequate metric to 
compare models of equals sizes). This conclusion is valid for deep or 
shallow hybrid structures. The best shallow structure with 10 hidden 
nodes (identified in the previous section) improved the noise free test 
error from 0.54 to 0.24 (>2 fold decrease) with ADAM+CV+tanh. The 
same conclusions can be taken for the deep structures, without excep
tion. The key conclusion is that the ADAM method systematically in
creases the predictive power of the final hybrid model for the Lee & 
Ramirez data set. 

The best model (with tanh activation function) among the deep and 
shallow structures is the 5 × 5 × 5 deep hybrid model with 98 weights, 
showing a noise free test error (WSSE = 0.09) 2.7 fold lower than the 
best hybrid shallow case (WSSE = 0,24). The AICc miss spotted the best 
deep model. It identified the 2nd best model (5 × 5 structure) with, 
however, comparable performance. In terms of CPU, the ADAM method 
is generally more expensive than the LMM method for small size net
works. This pattern reverses for large size networks (e.g., the best 5 × 5 
× 5 structure decreased CPU by 2,3 fold with ADAM in comparison to 
LMM). Thus, the CPU scales more steeply with the network size in the 
case of LMM training when compared to ADAM training. This favors 
ADAM for deep hybrid structures, both in terms of predictive power and 

Fig. 3. Boxplot of training, validation and testing WSSE for 10 training repetitions of the deep hybrid structure 5 × 5 × 5 trained by different training approaches 
either using the LMM or the ADAM method. Ten sets of initial weights were randomly generated (one per repletion) and kept the same in all tests performed for 
comparability. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 

Fig. 4. Effect of stochastic regularization (SR) on the predictive power of the hybrid model configuration 5 × 5 × 5 trained with ADAM + SR + indirect sensitivities 
with 20,000 iterations for the Lee & Ramirez data set. Obtained noise free test WSSE over minibatch probability (M probability) and weights dropout probability (Wd 
probability). (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.) 
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CPU time for training. 
Fig. 3 shows the effect of weights initialization on the final training, 

validation and testing error for the best deep configuration 5 × 5 × 5 
when the model is trained with LMM or with ADAM. The initial weights 
values were kept the same for LMM and ADAM training for compara
bility. Interestingly, the dispersion of the errors for 10 repetitions with 
different weights initialization is significantly lower for ADAM in com
parison to LMM, irrespective of the data partition (train, validation or 
testing). There is an outlying point with significantly higher final errors 
for both the LMM and ADAM trainings. Concordant results were ob
tained for the other model configurations (results not shown). This 
suggests the ADAM method to be less sensitive to weights initialization. 
Similar conclusions were reported by Hiscock (2019) for standalone 
deep neural networks, who showed that gradient descent training 
methods with variable learning rate (such as the ADAM method) are less 
prone to be trapped in local optima thus less sensitive to weights 
initialization. The key conclusion to be taken, is that the number of 
repetitions for different weights initialization may be mitigated in the 
case of ADAM training. This represents a potential 10 fold cut in CPU 
time in comparison to the LMM method for the case of 10 repetitions. 

The ReLU activation function in the hidden layers has been a key 
achievement in deep learning, outperforming the tanh function for 
standalone deep neural networks (Nair and Hinton, 2010). The use of 
ReLU was investigated comparatively with tanh in a hybrid modelling 
context. Table 2 compares hybrid model performances using the one or 
the other activation function in the hidden layers trained by ADAM + CV 
using the same training procedure. The key conclusion to be taken is that 
the ReLU further improved the training and test error in all cases without 
exception. The best 5 × 5 × 5 structure further decreased the noise free 
test WSSE from 0.09 (with tanh) to 0.04 (with ReLU) at comparable CPU 
cost. Our results clearly show the ReLU to be advantageous in a deep 
hybrid modeling context as previously shown for (standalone) deep 
neural networks (Nair and Hinton, 2010). The ReLU activation function 
was thus adopted in all proceeding studies. These results might be 
related to the problem of gradients vanishing/exploding in deep net
works. Typically, the tanh activation function is associated with van
ishing gradients whereas the reLU is associated with exploding gradients 
(Ding et al., 2018). The ADAM training is invariant to diagonal rescaling 
of the gradients. It does not completely avoid the problem of gradient 
vanishing when tanh is used. The use of ADAM with reLU is however 
very efficient at avoiding gradient explosion since it performs dynamic 
scaling of the learning rate (down) when the gradients become very 
large. 

3.3. Introducing stochastic regularization 

Stochastic regularization (SR) has been reported as an effective 
method to avoid overfitting in deep learning (Srivastava et al., 2014). 
Here we study the ADAM method with stochastic regularization in 
replacement of the cross-validation technique. More specifically, ADAM 
was implemented with the minibatch technique and the weights dropout 
technique. The minibatch technique consists in a random selection of the 
training patterns from the uniform distribution using a cutoff probability 
parameter. Similarly, the weights dropout technique used random 
weights selection according to a cutoff probability parameter. Fig. 4 
shows the effect of the minibatch size probability and of the weights 
dropout probability on the testing error for the deep configuration 5 × 5 
× 5. The hybrid 5 × 5 × 5 model was trained 10 times with different 
weights initialization with varying minibatch and weights dropout 
probabilities. Fig. 4 shows the lowest WSSE test among the 10 repeti
tions as function of the minibatch size probability and of the weights 
dropout probability. The training performance is indeed very sensitive 
to the choice of these two parameters. The optimal minibatch proba
bility is ~90% and the optimal dropout probability is ~50%. The final 
noise free test WSSE was 0.0258, which is 35.5% lower than the cor
responding solution without stochastic regularization (Table 2, 
ADAM+CV+ReLU). The final train and test errors among the 10 repe
titions are shown in Fig. 3. Interestingly the stochastic regularization 
eliminated the outlying training result obtained by LMM+CV and 
ADAM+CV in the previous section. This result is promising because it 
shows the weights initialization to have practically no influence on the 
final training outcome. If repetitions are not needed, the CPU cost may 
be significantly reduced in relation to the LMM+CV or ADAM+CV 
methods. 

3.4. Speeding up hybrid deep learning by semidirect sensitivities 

The results above support ADAM + deep networks + stochastic 
regularization to produced hybrid models with higher predictive power 
in comparison to the traditional shallow hybrid approach. Nevertheless, 
deep models tend to have large networks with the CPU time increasing 
with the network size (Luo et al., 2005). Solving the sensitivity equations 
is responsible for a significant part of the CPU cost. Taking the 5 × 5 × 5 
hybrid structure as example, solving the sensitivity equations implies 
integrating 98 × 5 = 490 ODEs along with the hybrid model ODEs for 
the computation of the objective function and objective function gra
dients. Such a large number of ODEs represents a significant CPU 

Fig. 5. Training and testing error (WSSE) over CPU time for 1) shallow hybrid model {10} + LMM +CV with ten repetitions (blue line) 2) the hybrid model 5 × 5 × 5 
trained with ADAM + stochastic regularization + indirect sensitivities (red line) and 3) ADAM + stochastic regularization + semidirect sensitivities (yellow line). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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burden. A different implementation of the sensitivity method was 
investigated, namely the semidirect sensitivity equations (see methods 
section) in an attempt to reduce CPU time. In the semidirect approach, a 
much lower number of 

( ∂c
∂v
)

sensitivity equations are integrated over 
time. For the same 5 × 5 × 5 hybrid structure, the 

( ∂c
∂v
)

sensitivities only 
require 5 × 4 = 20 ODEs to be integrated over time. Furthermore, the 
semidirect sensitivity equations are independent of the number and size 
of hidden layers (they depend only on the number of network inputs and 
outputs). Fig. 5 shows the variation of the train and test cost function 
over CPU for the configuration 5 × 5 × 5. This result shows that the 
semidirect sensitivity equations produced a comparable final training 
WSSE in relation to the indirect sensitivity equations. The convergence 
is however much faster. The CPU time could be reduced by 77.4% when 
adopting the semidirect sensitivity equations in comparison with the 
indirect approach. Furthermore, the test error follows similar patterns 
for both methods reaching a comparable final value. 

Fig. 6 shows the prediction of the optimal batch dynamics by the 
hybrid 5 × 5 × 5 model trained with ADAM+SR+ReLU+semidirect 
compared to the standard shallow model with 10 hidden nodes 
(LMM+CV+tanh+indirect). The noise free test WSSE was 0.03 and 0.54, 
respectively (94,4% reduction). It may be seen that both modes are able 
to describe fairly well the dynamics of the test experiment up to 7.5 h. 
There are however some visible differences towards the end of the 
cultivation. The shallow hybrid model underestimated the final biomass 
and final product by 15.3% and 13.8%, respectively, whereas the deep 
hybrid model overestimated the final biomass by 2.7% and under
estimated the final product by 5.8% only. 

3.5. Pilot scale Pichia pastoris case study 

Hybrid models were developed for the P. pastoris process with a 
similar structure to the Lee & Ramirez model. The biomass and product 
material balance equations, and the shock factor ODEs are kept the same 
in both models. A few modifications were however required as follows:  

• The inducer material balance equation was removed because in the 
MUT+ P. pastoris expression system the methanol is simultaneously 
the main carbon source and the inducer of foreign protein 
expression.  

• The substrate material balance equation was also removed because 
methanol concentration (the substrate) was not measured. This is a 
limitation imposed by the experimental protocol. Instead, the 
measured volumetric methanol feed rate (Fmet , g/Lh) and the 
measured total methanol fed to the reactor (g) were set as external 
inputs to the neural network.  

• Temperature (T) and pH were also added as external inputs to the 
neural network as these two parameters varied between 17.2 and 
30.1 ºC and pH 4.0–7.0 in the experiments performed as part of a 
design of experiments to study the influence of these two parameters 
in the protein expression.  

• The neural network computed the volumetric protein production 
rate (output) instead of the specific protein production rate as in the 
case of Lee & Ramirez. It is known that Pichia pastoris secretes pro
teases that hydrolyses the target product on certain experimental 
conditions (Cereghino and Cregg, 2000). The neural network is thus 
set to calculate the apparent volumetric production rate of the scFv, 
which lumps the synthesis and hydrolysis in the same kinetic term. 

We have investigated the optimal hybrid structures and concluded 
that the two best shallow and deep hybrid structures previously iden
tified for the Lee & Ramirez case study (namely the shallow structure 
with 10 nodes in the hidden layer and the deep 5 × 5 × 5 structure) also 
apply for the Pichia pastoris case study (results not shown). The number 
of parameters in both the shallow and deep models is the same, namely 
123. The shallow hybrid structure was trained with the traditional 
method (LM+CV+tanh+direct, 10 repetitions with random weights 
initialization from the uniform distribution) whereas the deep hybrid 
structure was trained with the new method 
(ADAM+SR+ReLU+semidirect, weight dropout probability of 0.5, 
minibatch probability of 0.9 and no repetitions). Eight reactor experi
ments were used for training-validation (validation data points were 

Fig. 6. Prediction of the dynamic profiles of observable variables (biomass -X, substrate– S and product–P) of the test batch (Lee & Ramirez dataset) by the best 
shallow hybrid model trained with the standard method (10 hidden nodes) and by the best deep hybrid model (5 × 5 × 5). Asterisks represented observations and 
respective ± standard deviation. The dashed line represents the “true” noise-free process behavior (hidden to the training of the hybrid models). The red line 
represents the predictions of the shallow hybrid model. The green line represents the prediction by the deep hybrid model. The shallow hybrid model used the tanh 
function and was trained by the traditional non-deep method (LMM algorithm + CV + indirect sensitivities + 10 repetitions and only the best result is kept). The deep 
hybrid model used the ReLU activation function and was trained by the novel method (ADAM + SR + semidirect sensitivities + no repetitions). (For interpretation of 
the references to color in this figure legend, the reader is referred to the web version of this article.) 
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obtained by adding Gaussian noise to the training data points as in the 
Lee & Ramirez case study) and just one experiment for testing. All 
possible training-validation/testing permutations were evaluated. The 
overall results are shown in Table 3 where each row represents a 
different training-validation/testing permutation. As illustrative 
example, Fig. 7 shows the measured and predicted dynamic profiles of 
biomass and product for the case of experiment F66 used for testing. The 
key conclusions to be taken is that both the training and testing WSSEs 
were lower for the deep hybrid structure in relation to the shallow 
structure, in all data partitions tested without exception. The AICc 
criteria also points out to the same conclusion. The differences between 
the dynamic profiles of biomass and scFv are clearly visible in Fig. 7. The 
predicted final scFv titer by the shallow hybrid model is 17.5% below 
the experimental value whereas the deep hybrid model overestimated 
the experimental value by 4.2% only. Taking all data partitions together 
(last row in Table 3), the average training WSSE decreased by 14.8% 
whereas the average testing WSSE decreased by 18.4% for the deep 
hybrid structure in relation to the shallow hybrid structure. Moreover, 
the average CPU time decrease by 43.4% when applying the deep 
methodology in comparison to the standard methodology. 

4. Conclusions 

In this study the general bioreactor hybrid model was revisited and 
some recent deep learning techniques were investigated in the context of 
hybrid modeling. The effect of increasing the depth of the neural 
network resorting to two different training approaches was investigated. 
The traditional approach uses the Levenberg–Marquardt optimization 
coupled with the indirect sensitivities, cross-validation and tanh acti
vation function. The novel hybrid deep approach uses the adaptive 
moment estimation method (ADAM), semidirect sensitivities, stochastic 
regularization and ReLU activation functions in the hidden layers. Two 
applications were addressed, one with a synthetic data set, the other 
with an experimental dataset collected in a pilot 50 L bioreactor. The key 
conclusion to be taken is that there is a clear advantage of adopting 
hybrid deep models both in terms of predictive power and in terms of 
computational cost in relation to the shallow hybrid case. In the 

Table 3 
Comparison of deep and shallow hybrid models for the pilot reactor MUT+
Pichia pastoris data set. Each row represents a hybrid model obtained by training 
over a different training/testing data permutation (Test batch ID refers to the 
batch used for testing while the remaining 8 batches were used for training/ 
validation). Shallow hybrid models had tanh activation function and were 
trained by the traditional non-deep method (LMM algorithm + CV + indirect 
sensitivities + 10 repetitions and only the best result is kept). Deep hybrid 
models used the ReLU activation function and were trained by the novel method 
(ADAM + SR + semidirect sensitivities + no repetitions).  

Test 
batch ID 

Model type Training WSSE 
(noisy) 

Testing WSSE 
(noisy) 

AICc CPU 
time 

F037 Shallow 10 2.18 2.58 664 19,560 
Deep 5 × 5 
× 5 

1.79 2.13 587 13,980 

F044 Shallow 10 2.42 3.94 700 46,440 
Deep 5 × 5 
× 5 

2.14 3.73 633 19,980 

F048 Shallow 10 2.01 2.55 626 15,060 
Deep 5 × 5 
× 5 

1.96 2.28 618 12,000 

F061 Shallow 10 2.65 4.69 738 22,860 
Deep 5 × 5 
× 5 

1.98 4.05 620 14,520 

F066 Shallow 10 2.54 2.82 722 13,680 
Deep 5 × 5 
× 5 

1.59 1.86 542 9660 

F007 Shallow 10 2.79 4.13 752 23,640 
Deep 5 × 5 
× 5 

2.24 2.98 663 13,320 

F009 Shallow 10 2.82 4.72 754 30,180 
Deep 5 × 5 
× 5 

2.62 3.76 730 12,480 

F018 Shallow 10 2.48 3.28 710 15,900 
Deep 5 × 5 
× 5 

2.31 2.67 684 10,200 

F072 Shallow 10 3.15 4.85 791 26,100 
Deep 5 × 5 
× 5 

3.01 3.98 775 14,820 

Sum Shallow 10 23.04 33.6 6457 213,420 
Deep 5 × 5 
× 5 

19.64 27.4 5852 120,960  

Fig. 7. Prediction of the dynamic profiles of observable variables (biomass-X, and product–scFv) by the shallow (10) hybrid model and by the deep (5 × 5 × 5) 
hybrid model for the test batch F066 of the MUT+ Pichia pastoris pilot data set. Asterisks represent observations and respective ± standard deviation. The red line 
represents the predictions of the shallow hybrid model. The green line represents the prediction of the deep hybrid model. The shallow hybrid model used the tanh 
activation function and was trained by the traditional non-deep method (LMM algorithm + CV + indirect sensitivities + 10 repetitions and only the best result is 
kept). The deep hybrid model used the ReLU activation function and was trained by the novel method (ADAM + SR + semidirect sensitivities + no repetitions). (For 
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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Lee&Ramirez case study, the prediction error decreased 94.4% and the 
CPU decreased 29%. In the case of the P. Pastoris case study, the pre
diction error decreased 18.4% and the CPU decreased 43,3%. The 
ADAM method coupled with stochastic regularization shows two sig
nificant advantages. First, it is practically insensitive to weight initiali
zation thereby eliminating the need for training repetitions. Second, the 
stochastic nature of the method is less sensitive to experimental noise 
eliminating the need for cross-validation. Lastly, the introduction of 
semidirect sensitives, further decreases the CPU time particularly for 
large deep structures as the number of sensitivity equations (that need to 
be integrated over time) becomes independent of the number of hidden 
layers. 
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