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Summary

The production of fuels and other valuable chemicals via bio-
logical routes has gained significant attention during last de-
cades. Cyanobacteria are prokaryotes that convert solar
energy to chemical compounds in vivo in direct processes.
Intensive studies have been carried out with the aim of engi-
neering cyanobacteria as microfactories for solar fuel and
chemical production. Engineered strains of photosynthetic
cyanobacteria can produce different compounds on a proof-of-
concept level, but few products show titers comparable with
those achieved in heterotrophic organisms. Efficient genetic
engineering tools and metabolic modeling can accelerate the
development of solar fuel and chemical production in cyano-
bacteria. This review addresses the most recent approaches to
produce solar fuels and chemicals in engineered cyanobac-
teria with a focus on acetyl-CoA-dependent products.
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Introduction
Cyanobacteria, the ancestors of chloroplast in higher
plants and algae, are capable of converting solar energy,
CO2, and H2O, and in some species N2 as well, into
chemical energy while releasing O2 to the atmosphere.
They possess a high solar energy capturing efficiency,
www.sciencedirect.com
which is at least three times higher than that of plants.

Their CO2 concentrating mechanisms minimize the
negative effects from photorespiration, therefore, ac-
celerates the photosynthesis process. Owing to their
rapid growth rate, modest nutrient requirements, and
ability to grow using waste water resources and on
nonarable land, cyanobacteria have emerged as potential
hosts for sustainable production of valuable compounds
directly from sunlight and CO2. In the recent two de-
cades, research has been directed toward modifying the
metabolism of cyanobacteria for enhancing production
of various chemicals or biofuels. Engineering strategies

include optimizing light absorption capacity [1,2],
increasing carbon fixation [3], rerouting metabolic flux
to desired pathways [4,5], decoupling growth and pro-
duction [6], and rebalancing cofactor supply [7,8].
Moreover, different metabolic models have been
developed to provide better understanding of selected
metabolic pathways and to suggest effective engineering
approaches. In addition, some robust fast-growing
cyanobacterial strains, for example, Synechococcus UTEX
2973 [9] and Synechococcus elongatus PCC11801 [10], have
been characterized recently as potential efficient

chemical producing chassis and metabolic engineering
tool for the new strains are under developing. In this
review, we highlight recent advances in metabolic en-
gineering for enhanced chemical production in cyano-
bacteria, using production of acetyl-CoA-dependent
chemicals as examples. Furthermore, we identify and
discuss future challenges in this field.
Strategies for increasing the intracellular
pool of metabolic precursor
An abundant precursor pool is essential for high level
production of desired chemicals. Acetyl-CoA, a central
metabolite directly involved in TCA cycle, is naturally
produced from pyruvate decarboxylation catalyzed by a
pyruvate dehydrogenase complex (PDHc) (Figure 1).
When a biosynthesis pathway in cyanobacteria is intro-
duced or overexpressed, titers of chemicals derived from

pyruvate (e.g. 5.5 g L�1 ethanol [11]) are much higher
than those derived from acetyl-CoA (e.g. 100 mg L�1

fatty alcohols [12]) because the intracellular content of
acetyl-CoA is less than 5% of the abundant pyruvate
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Figure 1

Scheme of biosynthetic pathways that have been demonstrated in Synechocystis PCC 6803 for acetyl-CoA derived chemical production. Native
metabolic pathways are indicated in black lines and heterologous metabolic pathways are indicated in red lines. CBB cycle: Calvin–Benson–Bassham
cycle; CcmM: carbon dioxide concentrating mechanism protein; G3P: glyceraldehyde 3-phosphate; PEP: phosphoenolpyruvate; TCA cycle: tricarboxylic
acid cycle; PHB: polyhydroxybutyrate.
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content [13,14]. The low acetyl-CoA content may be
the result of a potential low catalytic efficiency of
PDHc, or a weak driving force due to the generally low
activity of the TCA cycle in cyanobacteria under
photoautotrophic conditions [15]. Thus, enriching the
flux to the acetyl-CoA pool is a key step to enhance the
production of downstream products. Several earlier
studies applied dark fermentation or nutrient deficient

conditions to enhance the intracellular acetyl-CoA
availability via activating glycogen degradation [16,17].
However, these cultivation strategies normally lead to
reduced growth and productivity. More recently, atten-
tion has been focused on metabolic engineering of up-
stream metabolism to increase the flux towards the
acetyl-CoA pool without using extreme cultivation
conditions.

The pyruvate dehydrogenase complex consists of three
enzymes, pyruvate dehydrogenase, dihydrolipoamide

acetyltransferase, and dihydrolipoamide dehydrogenase.
The expression and activity of this complex is tightly
regulated [18]. Therefore, overcoming the regulation
and increase flux from pyruvate to acetyl-CoA has been a
strategy to enlarge the acetyl-CoA pool. A study in
Synechococcus elongatus PCC 7942 showed that by
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overexpressing the native PDHc, total PDHc activity
was increased 2-fold and intracellular acetyl-CoA con-
tent reached 2.6-fold of that in the control strain
(Figure 2). When biosynthesis pathways for two acetyl-
CoA-derived products, acetate and isopropanol, were
introduced into the acetyl-CoA-enhanced strain sepa-
rately, this resulted in a 7-fold and a 3.8-fold improve-
ment in product titer, respectively [19]. In another

proof-of-principle study, a synthetic acetate-acetyl-
CoA/malonyl-CoA bypass (Figure 2) for overcoming
the rate limitation of PDHc was examined in Synecho-
coccus elongatus PCC 7942, using acetone titer as reporter.
After integrating a pyruvate decarboxylase, an aldehyde
dehydrogenase, and an acetylation-tolerant acetyl-CoA
synthase into the WT strain, acetyl-CoA content was
nearly 4-fold higher than that in the control strain on day
2 and more than 6.5-fold higher on day 8, whereas py-
ruvate content was about 2-fold higher than that in the
control strain on both days [20]. However, when an

acetone biosynthesis pathway was introduced into the
engineered background strain, the intracellular acetyl-
CoA content decreased from 138 mg g�1 DCW�1 to
5 mg g�1 DCW�1 on day 2 while pyruvate content
decreased by more than half. By contrast, on day 8, the
significant decrease in acetyl-CoA and pyruvate pools
www.sciencedirect.com
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Figure 2

Scheme illustrating the strategies of increasing acetyl-CoA pool. Different colored backgrounds indicate different strategies. Blue: AAM-bypass. Pdc:
pyruvate decarboxylase; Ald6: aldehyde dehydrogenase; Acs: acetylation-tolerant acetyl-CoA synthase; MMC: methyl malonyl-CoA carboxyltransferase;
Green: overexpression of PDHc. PDHc: pyruvate dehydrogenase complex. Orange: Carbon redirecting from CBB cycle. Pk: phosphoketolase. OXA:
oxaloacetate; Ru5P: ribulose-5-phosphate; RuBP: ribulose-1,5-bisphosphate; 3PGA: 3-phosphoglycerate; G3P: glyceraldehyde-3-phosphate; F6P:
fructose-6-phosphate; E4P: erythrose-4-phosphate; X5P: xylulose-5-phosphate; PEP: phosphoenolpyruvate; acetyl-P: acetyl-phosphate.
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disappeared. Although the authors did not extensively
discuss this difference from different dates, our hy-
pothesis is that the initial decrease of acetyl-CoA and

pyruvate pool was because of the constant production of
acetone and cell growth. From day 6, cells stopped
growing and less acetone was produced. Thus, more
acetyl-CoA was accumulated in the cells because the
flux from acetyl-CoA to acetone slowed down [20].
Furthermore, the expression of a methyl malonyl-CoA
carboxyltransferase significantly increased acetyl-CoA
pool even on day 2 and the fitness of the cells was
better during stationary phase while more acetone was
produced compared with the control strain. This may be
due to a higher turnover of TCA cycle and an efficient

conversion from malonyl-CoA to acetyl-CoA. With the
help of acetate-acetyl-CoA/malonyl-CoA bypass,
acetone titer was successfully increased to 0.41 g L�1

[20]. Notably, it is not always easy and accurate to follow
the change of acetyl-CoA pool because the change in a
central metabolite can disperse to many downstream
biosynthesis pathways instantaneously. Thus, when
more acetyl-CoA is produced in the cell, we may not be
able to monitor it before it quickly goes into other
pathways. Therefore, concerning the metabolic engi-
neering strategy, it would be more efficient to optimize

the target biosynthesis pathways first; then the effects
www.sciencedirect.com
from modifications on central metabolism can be
observed using final products as reporters.

Despite the modification made on the reaction from
pyruvate to acetyl-CoA, investigations on directing
carbon flux toward acetyl-CoA from other routes have
also been demonstrated in studies aiming for enhancing
butanol production. In photoautotrophic conditions, the
introduction of phosphoketolase allows carbon to be
pulled directly from the CalvineBensoneBassham
(CBB) cycle without going through Embden-Meyerhof-
Parnas pathway (Figure 2). This bypass requires less
CO2 and RubisCO turnover. Flux balance analysis was
used to predict the effect of introducing phosphoketo-

lase on acetyl-CoA-dependent 1-butanol production in
Synechocystis PCC 6803. Based on the positive modeling
result, a phosphoketolase from Bifidobacterium breve was
introduced into WT Synechocystis PCC 6803, resulting in
a 6-fold increase of acetyl-CoA under nitrogen replete
condition [21]. When the phosphoketolase was intro-
duced into the 1-butanol producing strain, 1-butanol
titer was increased 1.7-fold in N� condition, but
change of acetyl-CoA was not reported. A similar strat-
egy resulted in a 1.4-fold increase of acetone production
in Synechococcus PCC 7942 where a phosphoketolase from
Current Opinion in Chemical Biology 2020, 59:69–76
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Aspergillus nidulans and a phosphotransacetylase from
Bacillus subtilis were used [22].

Although many studies have been carried out on modi-
fying precursor pool in the aim of improving final
chemical production, more metabolomics studies are
needed to provide comprehensive overview on meta-
bolic changes happening in the cell when the central

pathways are modified or redirected. For example, when
the acetyl-CoA pool is modified, we would like to know
more about the effects on carbon fixation efficiency,
carbon storage, TCA cycle turnover rate, and intracel-
lular content of other acetyl-CoA-derived metabolites,
for example, fatty acids, and PHB. With more metab-
olomics data, better metabolic models can be built for
more reliable guidance for future engineering designs.
Optimizing and rewriting biosynthesis
pathways
Biosynthesis pathways can be optimized via various ap-
proaches, such as improving enzyme expression levels,
increasing enzyme activities, eliminating or down-
regulating competing pathways, accelerating trans-
portation of intermediates between enzymes, and

improving the excretion of end products.

Significant progress has been made on developing more
predictable and efficient genetic elements for enhanced
and stable expression of key enzymes within interested
biosynthesis pathways in cyanobacteria. Many new
artificial and endogenous promoters [23], terminators
[23], ribosome binding sites [24], riboregulators [25],
and riboswitches [26] have been developed and char-
acterized in a number of cyanobacterial strains. The
utilization of these new genetic tools has led to
noticeable improvement in pathway expression and

product titers. For instance, in a study aimed to increase
the production of (R)-3-hydroxybutyrate (3HB) in
Synechocystis PCC 6803, a 13C kinetic flux profiling
method was first used to identify the bottleneck enzyme
of the pathway. Then the ribosome binding site of the
identified bottleneck enzyme, acetoacetyl-CoA reduc-
tase, was optimized to be fully complementary to the 30-
terminal sequence of 16S rRNA in Synechocystis PCC
6803. This modification resulted in a 2.2-fold increase in
enzyme activity and 3.5-fold higher 3HB production
[27]. Although intense efforts have been put in

discovering, developing, and optimizing different ge-
netic tools on transcriptional and translational levels, a
fine-tuning expression system has not been established,
because of the limited option of inducible elements and
the lack of knowledge on the mechanism behind the
existing repression and induction systems. For example,
the widely used IPTG-induced series of LacI-repressed
promoters that work well in Escherichia coli, yeast, and
even in Synechococcus elongatus 7942, can only be used as
strong constitutive promoters in Synechocystis PCC6803
Current Opinion in Chemical Biology 2020, 59:69–76
because of significant leakage for which the mechanism
remains unclear [28].

Clustered regularly interspaced short palindromic re-
peats (CRISPR) system has also been successfully
established in both unicellular and filamentous cyano-
bacterial strains for genome editing [29]. A system for
multiplex gene repression through CRISPR interfer-

ence (CRISPRi) using a modified Cas9 was developed
for Synechocystis PCC6803 [30], and later used for
increasing fatty alcohol production [31]. A simultaneous
repression of six genes involved in alkane synthesis
pathway and lipid synthesis pathway was achieved effi-
ciently and the fatty alcohol content increased two-fold
compared with the control strain [31]. A heterocyst-
specific conditional gene repression of glutamine syn-
thetase via CRISPRi was also generated in the fila-
mentous cyanobacterium Anabaena PCC 7120, resulting
in enhanced ethanol production [32]. By using a

CRISPR system, multiple gene regulation or genetic
modifications can be done without the obstacle of
limited choices of antibiotics. Nonetheless, the
expression of CRISPR system is not always easy because
of the toxicity or the large size of the enzymes, Cas9 or
Cpf1.

Finding efficient enzymes is always an important
consideration when the aim is to establish a well-
performing synthetic metabolic pathway. The initial
step for identifying suitable enzymes is to screen

numerous isoforms from different organisms [33]; then
rational design or directed evolution can be done on the
selected candidates for further improving their catalytic
capacities. Unfortunately, there are not many protein
engineering studies using cyanobacteria as host organ-
isms, even when cyanobacterial enzymes were explored.
For example, to generate an aldehyde-deformylating
oxygenase (ADO) with better catalysis capacity for hy-
drocarbon production, Kudo et al. successfully compared
the activity and solubility of ADO isoforms from 10
different cyanobacterial strains by overexpressing and
extracting them in E. coli. Then 37 single amino acid

substitutions were examined to create an ADO isoform
with high activity as well as high solubility [34]. For
protein engineering study, both in vitro and in situ assays
are essential for a clear understanding of the engineered
enzyme. There has been evidence showing that an
in vitro assay cannot provide a comprehensive reflect on
in vivo or in situ performance of the engineered enzymes
[35], because even when the differences in the amino
acid sequence between two enzymes are small, the
differences in expression levels may be large.

It is worth noting that when modifying metabolic
pathways which branch to different products, it may be
unpredictable how each product will be affected.
Recently, Yunus et al. attempted to increase hydrocar-
bon production in Synechocystis PCC 6803 by
www.sciencedirect.com
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overexpressing the native ADO that synthesizes alkane
from fatty aldehyde, and introducing a heterologous
carboxylic acid reductase from Mycobacterium marinum
which converts free fatty acids to fatty aldehyde [36].
This modification, however, resulted in enhanced level
of fatty alcohols but decreased level of alkanes. To
overcome this obstacle, a light-dependent fatty acid
photodecarboxylase from Chlorella variabilis [37] was

expressed instead of carboxylic acid reductase and ADO,
resulting in a 19-fold higher alkane production
compared with that of wild-type Synechocystis PCC 6803
strain [36]. A reliable metabolic model can be helpful for
guiding an efficient and predictable metabolic engi-
neering design. In cyanobacteria, considerable progress
has been made in establishing different models, for
example, genome-scale modeling and kinetic modeling,
although confined to the model species. This topic has
been recently reviewed in Hendry et al. 2020 [38].

In a comprehensive study on metabolic engineering for
1-butanol production via an acetyl-CoA-dependent
route in Synechocystis PCC 6803, many of the systematic
approaches mentioned previously were implemented to
enhance product titer [39]. First of all, screening of
different enzyme candidates including engineered
variants was performed to enable more efficient catalysis
of each step of the 1-butanol synthesis pathway. Then,
to route carbon flux directly from the CBB cycle, nine
phosphoketolases from different organisms were exam-
ined and the best performer among these 9 candidates, a

phosphoketolase from Pseudomonas aeruginosa which
contributed in a 53% increased titer, was selected.
Furthermore, another 2.3-fold increase of 1-butanol
production was observed after enhancing protein tran-
scription and translation levels by using different strong
promoters and genetic insulators. In the end, an opti-
mized 1-butanol-producing strain was cultivated in a
modified condition with product removing and pH
adjustment, which resulted in a cumulative photoauto-
trophic production of 4.8 g L�1, with a maximal rate of
302 mg L�1 day�1, a titer comparable with those
achieved in heterotrophic production hosts [39,40].
A single manipulation of the metabolism
may result in multiple physiological
changes
Numerous proof-of-concept studies have demonstrated

the possibility to engineer cyanobacteria to produce
interesting and valuable chemicals [41e43]. However,
the absolute majority focus on production rates and
levels, and do not report physiological effects of the
engineered strains beyond growth assessment, resulting
in a lack of information to guide further metabolic en-
gineering design. In cyanobacteria, physiological studies
are especially important because all introduced meta-
bolic modifications may affect the functionality of pho-
tosystems and the CBB cycle. In some studies, it has
www.sciencedirect.com
been shown that the overproduction of target metabo-
lites in cyanobacteria may result in a significant change
in photochemistry. When an engineered strain shows a
retarded growth or unhealthy phenotype, product or
intermediate toxicity is often considered as a potential
cause. However, it is not always reliable to evaluate cell
tolerance level by adding a high concentration of the
chemical of interest externally into the growth

media because when the engineered cells themselves
produce the chemical, they may also be able to gradually
adapt to increasing concentrations. When detrimental
effects are observed in an engineered strain, it would be
helpful to examine more physiological parameters, such
as cell morphology, cell division, efficiency of the CBB
cycle, and effects on the expression and function of the
photosynthetic apparatus. The results of such in-
vestigations may lead to the discovery of better meta-
bolic engineering and cultivation strategies. For
example, free fatty acids, fatty alcohols, and alka(e)nes

are popular biofuel compounds that have been over-
produced in different cyanobacterial strains. However,
the overproduction of these compounds is not innocent
to the entire cell because their biosynthesis pathways
are closely connected to the inherent lipid metabolism.
Lipid content and composition are important for main-
taining and adjusting membrane structure, fluidity, and
rigidity. In photosynthetic organisms, the complete
photosynthetic apparatus is located on the thylakoid
membrane (Figure 3), so minor changes on the thylakoid
membrane may affect the photosynthesis drastically.

This was demonstrated by Kaczmarzyk et al. in a study
of fatty alcohols production in Synechocystis PCC 6803.
They found that as fatty alcohols accumulated, cell
growth was impaired, the membrane composition
varied, and more reactive oxygen species were produced
[31].
Conclusion and outlook
Progress has been made in recent years in engineering
cyanobacteria as cell factories to produce acetyl-CoA-
derived valuable chemicals that can be used as biofuels,
bulk chemicals, pharmaceutical compounds, cosmetics,
and more. The development of synthetic genetic tools
and metabolic modeling opens new opportunities to
make significant improvements in metabolic manipula-
tion. For example, the utilization of various transcrip-
tional and translational regulators, as well as CRISPRi,

enables more precise modification and tuning of gene
expression, which allows us to redesign essential meta-
bolic pathways to benefit the balance of cell fitness and
production of downstream metabolites. Investigations
on photosynthesis and carbon fixation will provide
better understanding of cell physiology, energy supply,
and transfer mechanisms, which can indicate further
engineering directions. However, studies of combined
perspectives are needed for more comprehensive
improvement in metabolic engineering of cyanobacteria
Current Opinion in Chemical Biology 2020, 59:69–76
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Figure 3

Photosynthetic apparatus located on the thylakoid membrane of cyanobacteria. PSI: photosystem I; PSII: photosystem II; PQ: plastoquinone; b6f: cy-
tochrome b6f complex; PC: plastocyanin; Fd: ferredoxins; FNR: ferredoxin NADP-reductase. Phycobilisome moves rapidly on top of the thylakoid
membrane between PSII and PSI.
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as efficient cell catalysts. Until now, many metabolic
engineering studies, not only in cyanobacteria, lack in

systematic design. In the future, transcription and
translation models may be developed to be used
together with or even fused into the metabolic models
to estimate the whole cell metabolism change with the
chosen transcription and translation elements. The goal
is to develop cyanobacteria as energetically and
commercially viable production hosts. This means being
able to fine-tune the cell metabolism to increase pro-
ductivity and lower the costs of production, while
maintaining fitness, something that will require a com-
bined approach as outlined previously. For increasing
productivities, enhancement of photosynthesis as well

as carbon fixation efficiencies will be needed, and
expanding the catalog of strains used to include natu-
rally faster growing variants is another strategy which is
receiving increased attention and should be further
explored in the future.
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