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Summary

Bacillus subtilis is an effective workhorse for the production of many industrial products. The high interest aroused by B. subtilis has guided a large metabolic modeling effort of
this species. Genome-scale metabolic models (GEMs) are powerful tools for predicting the metabolic capabilities of a given organism. However, high-quality GEMs are required in
order to provide accurate predictions. In this work, we construct a high-quality, mostly manually curated GEM for B. subtilis (iBB1018). The constructed model was further used as
a tool for the construction of the panphenome of B. subtilis as a species, by means of multistrain genome-scale reconstruction. The panphenome space was defined in the
context of 183 GEMSs representative of 183 B. subtilis strains and the array of carbon sources sustaining growth. Our analysis highlights the large metabolic versatility of the

species and the important role of the accessory metabolism as a driver of the panphenome, at a species level.
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